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a b s t r a c t

We take a fairly comprehensive approach to the problem of solving elliptic partial differ-
ential equations numerically using integral equation methods on domains where the
boundary has a large number of corners and branching points. Use of non-standard integral
equations, graded meshes, interpolatory quadrature, and compressed inverse precondi-
tioning are techniques that are explored, developed, mixed, and tested on some familiar
problems in materials science. The recursive compressed inverse preconditioning, the
major novelty of the paper, turns out to be particularly powerful and, when it applies, elim-
inates the need for mesh grading completely. In an electrostatic example for a multiphase
granular material with about two thousand corners and triple junctions and a conductivity
ratio between phases up to a million we compute a common functional of the solution with
an estimated relative error of 10�12. In another example, five times as large but with a con-
ductivity ratio of only a hundred, we achieve an estimated relative error of 10�14.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The last decades have seen huge progress on solving elliptic partial differential equations numerically using Fredholm
second kind integral equation methods. Problems with smooth and well-separated boundaries and simple boundary condi-
tions for Laplace’s and similar equations in two dimensions are well understood. To solve them with fast iterative methods
has become standard tasks. Recent research on high performance computing within this field is often focused on three
dimensions [23,29] or on fast direct solvers [22].

In applications, particularly in materials science, geometries of interest, such as aggregates of grains and fractured spec-
imens, almost never have smooth and well-separated boundaries. Branching points are frequent and second kind integral
equations which otherwise are of Fredholm type lose important properties. Smooth kernels develop fixed (near) singulari-
ties. Layer densities, which are to be solved for, exhibit complicated asymptotic behavior. This, too, is well-understood the-
oretically [10]. Generalized Gaussian quadrature [3], graded meshes [1], tailor-made basis functions [7,8,14,26], Sinc
quadrature [21], conformal mapping [5], and the method of images [2] are some techniques that have been suggested in or-
der to avoid uneconomical mesh refinement. But when it comes to constructing efficient and versatile numerical schemes
that simultaneously resolve kernels and densities close to boundary singularities of general types there still seems to be
room for improvement, even in two dimensions [27]. Furthermore, there are reasons to reconsider the choices of the integral
equations themselves. If one can find one second kind integral equation for a PDE on a given geometry, one can often find
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many [12,17,19,24]. Which choice is the best depends on, for example, values of material parameters, needs for accuracy,
regularity of boundary values, and what aspect of the solution is of interest. Sometimes, switching integral equation formu-
lation could have greater impact on computational efficiency than advanced numerical techniques.

This paper treats two familiar boundary value problems on non-smooth infinite domains: one electrostatic and one elas-
tostatic. The electrostatic problem is treated in detail, while the elastostatic problem is included merely to illustrate the
broader applicability of our techniques. We settle for Nyström discretization, composite quadrature, and iterative solution
and show how choices of non-standard integral equations in combination with special-purpose interpolatory quadrature
[16], in some situations, leads to large improvement in convergence and achievable accuracy. Further speedup is achieved
by graded meshes. Here the classic use of grading exponents [1] is replaced by a numerically controlled subdivision proce-
dure. We also introduce a compressed inverse preconditioner. In short, this is a local change of variables that restores the
Fredholm property of the integral equation across boundary singularities and makes the new layer density piecewise
smooth. This, in turn, reduces the need for resolution and improves the spectral properties of the system matrix. Iterative
solvers converge faster. Lastly, we present a recursive construction of the compressed inverse preconditioner. It can be
viewed as a fast direct local solver and enables the treatment of geometries of unprecedented complexity. A pleasant
side-effect is that the performance of otherwise less efficient integral equations can be substantially increased as the recur-
sive compressed inverse preconditioner gets into action. One is more free to choose a formulation which suits a given prob-
lem from a modeling point of view.

A number of different techniques are introduced, combined, and tested in different environments. To help the reader nav-
igate through the paper, we give a crude summary of concepts already at this early stage:

� Singular boundary points lead to problems with computational economy. The problems are particularly severe when high
accuracy is sought. Mesh refinement makes spectra of system matrices grow. A finer discretization, thus, induces more
iterations and eventually also less accurate results.

� Meshes close to singular boundary points could be refined according to various strategies. A simply graded mesh is refined
using binary subdivision while an aggressively graded mesh is refined using a more advanced scheme, aiming at fewer sub-
divisions to reach a given resolution.

� Recursive compressed inverse preconditioning is a multilevel preconditioning technique based on a coarse grid and a hier-
archy of grids on simply graded meshes. It aims at a well-conditioned equation at the top-level. It is extremely powerful
when it applies and is the major novelty of the paper.

� Direct compressed inverse preconditioning is a two-level preconditioning technique. It has a larger setup cost than recursive
compressed inverse preconditioning, but is easier to implement.

� Plain recursive compression is a multilevel compression technique. It could be seen as a use of special basis functions whose
construction is purely numerical and free of asymptotic analysis.

� Regularization is a simple trick to enhance the performance of a quadrature rule in the discretization of integral operators
which in a sense are (nearly) singular. It works best for continuous layer densities.

� Special-purpose interpolatory quadrature [16] is a more generally applicable and efficient alternative to regularization. It
works also for layer densities with jump discontinuities. It has great impact on aggressively graded meshes and can be
used to shorten recursion lengths in recursive compression.

When presenting our two boundary value problems we use symbols in accordance with previous work. Some variables
have multiple meaning. In electrostatics k;q and r denote a contrast ratio, a single layer charge density, and conductivity. In
elastostatics they denote a symmetric Williams exponent, a weight function, and stress. To simplify the transition between
real and complex notation we shall make no distinction between points or vectors in the real plane R2 and points in the com-
plex plane C. We refer to the plane as D.

2. An electrostatic inclusion problem

Let an inclusion made out of Ngr grains with conductivities rk; k ¼ 1; . . . ;Ngr, be embedded in D while the remainder of D
has conductivity r0. The local conductivity rðzÞ is then a piecewise constant function on D. Let the boundary of all grains be
denoted C and be given orientation. In general, for Ngr > 1;C will have branching points in the form of triple-junctions. Let
nz ¼ nðzÞ be the outward unit normal of C at z. Let the electric potential UðzÞ at a point z far away from the origin obey
lim
z!1

UðzÞ ¼ Rf�ezg; z 2 D; ð1Þ
where e is a unit vector which can be interpreted as the (negative) average electric field and �e is its complex conjugate. As-
sume now that we want to solve the electrostatic equation in the plane for the purpose of computing the quantity q given by
q ¼
Z

C
UðzÞaðzÞIf�edzg; ð2Þ
where
aðzÞ ¼ rþðzÞ � r�ðzÞ; z 2 C ð3Þ
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and where rþðzÞ is the conductivity on the positive side of C and r�ðzÞ is the conductivity on the negative side of C. The
electrostatic equation means Laplace’s equation in D n C with potential and normal current being continuous across C.
The quantity q of (2) is important in homogenization problems and can, for a doubly periodic geometry, be interpreted as
the contribution to the average electric current in the e-direction caused by the inclusion.

2.1. Three integral equations

Standard practice for electrostatic problems is to represent UðzÞ as a sum of a single layer potential and a driving term [11]
UðzÞ ¼ Rf�ezg þ 1
2p

Z
C
qðsÞ log js� zjdjsj; z 2 D: ð4Þ
Here qðzÞ is an unknown real valued layer density which can be solved from the integral equation
qðzÞ þ kðzÞ
p

Z
C
qðsÞI nz�ns ds

s� z

� �
¼ 2kðzÞRf�enzg; z 2 C; ð5Þ
where
kðzÞ ¼ aðzÞ=bðzÞ; and bðzÞ ¼ rþðzÞ þ r�ðzÞ: ð6Þ
Once qðzÞ is available, q can be computed as
q ¼ r0

Z
C
qðzÞRf�ezgdjzj: ð7Þ
An alternative integral equation can be derived from Green’s second identity and expressed in terms of the potential UðzÞ
itself on C as
UðzÞ � 1
bðzÞp

Z
C

UðsÞaðsÞI ds
s� z

� �
¼ 2r0

bðzÞRf
�ezg; z 2 C; ð8Þ
see [12] and references therein. We observe that after solving for UðzÞ; z 2 C, Eq. (8) can also be used as direct evaluation
formula for UðzÞ; z 2 D n C. One simply sets bðzÞ ¼ 2rðzÞ and moves the integral to the right hand side.

Yet another integral equation can be derived for a density lðzÞ using partial integration in the single layer potential equa-
tion (5):
lðzÞ þ kðzÞ
p

Z
C
lðsÞI ds

s� z

� �
¼ 2kðzÞIf�ezg; z 2 C: ð9Þ
Once lðzÞ is available, q can be computed as
q ¼ �r0

Z
C
lðzÞRf�edzg: ð10Þ
The integral equations (5), (8) and (9) are similar and related. They are all of Fredholm’s second kind with unique solutions
when Ngr ¼ 1;C is smooth, and jkj < 1. The operator on the left-hand side of (5) is then the adjoint of the operator on the left-
hand side of (8). The operators on the left-hand sides of (8) and (9) transform into each other when the sign of k is changed.
Despite of their similarities, the integral equations and their solutions also exhibit differences which, in turn, have conse-
quences for numerics.

First, for Ngr ¼ 1 and k ¼ 1 the equations (5) and (8) admits non-trivial homogeneous solutions while (9) does not. For
k ¼ �1 the opposite holds. This has consequences for the numerical solutions of discretized versions of (5), (8) and (9) when
the contrast ratio of the material is high. Values of k close to plus or minus one yield nearly singular system matrices and
possibly very inaccurate solutions. Clearly, Eq. (9) is preferable whenever r0 < r1.

Second, the regularity of qðzÞ;UðzÞ and lðzÞ are not all the same and this has consequences when it comes to solving prob-
lems on domains where C has corners and triple-junctions. The three equations (5), (8) and (9) are still solvable when jkj < 1,
but none of them are of Fredholm’s second kind. With the use of variable separation one can investigate the asymptotic
behavior of qðzÞ;UðzÞ and lðzÞ close to a corner. One can show that the density qðzÞ diverges and asymptotically behaves
as sm�1, where s is the distance to the corner, and 0:5 < m < 1 is a real number. For the corners in, for example, an equilateral
triangle we have for k > 0 that m is the smallest positive non-zero solution to
k sin
2pm

3

� �
¼ sin pmð Þ: ð11Þ
The densities UðzÞ and lðzÞ, on the other hand, behave better. They are both continuous across corners when Ngr ¼ 1. The
density UðzÞ is a cusp. It has a leading behavior which can be described by a constant plus a term proportional to sm. When
Ngr > 1;UðzÞ is still continuous across corners and triple-junctions while lðzÞ has jump discontinuities. The density lðzÞ is a
primitive function of qðzÞ.
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In conclusion, we can say that the integral equation (9) for lðzÞ seems to be the most promising choice whenever r0 < r1

and Ngr ¼ 1, and our objective is to compute q of (2) to high accuracy on a domain that contains corners. When Ngr > 1 the
picture is more complex. But when r0 < rk; k ¼ 1; . . . Ngr, Eq. (9) still should give the most well-conditioned linear system.

3. An elastostatic crack problem

Let C be an oriented crack, a finite cut, in an infinite linearly elastic plane with stress
lim
z!1
ðrxxðzÞ;ryyðzÞ;rxyðzÞÞ ¼ ðr1xx;r

1
yy;r

1
xyÞ ð12Þ
applied at infinity. The crack starts at cs, ends at ce, is free of traction on both its faces, and allowed to respond to external
loading with any finite crack opening displacement. The problem of determining the stress and displacement fields in this
plane is a linear elastostatic problem. The stress state at infinity may be defined in terms of two constants a and b via
r1xx þ r1yy ¼ 2a and r1yy � r1xx þ 2ir1xy ¼ 2�b.

The complex valued stress intensity factor K ¼ K I þ iK II and the normalized stress intensity factor F at the crack tips cs and
ce can be defined as [8,15]
KðcsÞ ¼ lim
�!0þ

ffiffiffiffiffiffiffiffiffi
2p�
p

½ry0y0 ðcs � i�nðcsÞÞ þ irx0y0 ðcs � i�nðcsÞÞ�; ð13Þ

KðceÞ ¼ lim
�!0þ

ffiffiffiffiffiffiffiffiffi
2p�
p

½ry0y0 ðce þ i�nðceÞÞ þ irx0y0 ðce þ i�nðceÞÞ�; ð14Þ

FðcjÞ ¼
KðcjÞ

r1
ffiffiffiffiffiffi
pa
p ; j ¼ s; e; ð15Þ
where � is a real number, x0 and y0 refer to local coordinate systems aligned with the crack at the crack tips, r1 is related to
the applied load, and a is a geometry dependent constant. Stress intensity factors can be computed once the elastostatic
problem is solved. They are of interest in the study of fracture processes [9].

3.1. Two integral equations

Several second kind singular integral equations can be derived for the elastostatic crack problem using potential repre-
sentations due to Muskhelishvili [17,24]. We pick two equations and only state results. For this, introduce the Cauchy sin-
gular operator M1 whose action on a function f ðzÞ is given by
M1f ðzÞ ¼ 1
pi

Z
C

f ðsÞds
s� z

; z 2 C ð16Þ
and the operators M2 and M3, compact on smooth C, given by
M2f ðzÞ ¼ 1
p

Z
C

f ðsÞI ds
s� z

� �
þ 1

2pi

Z
C

f ðsÞd s� z
�s� �z

h i
; z 2 C ð17Þ
and
M3f ðzÞ ¼ 1
2pi

Z
C

f ðsÞds
s� z

þ
�nz

nz

Z
C

f ðsÞds
�s� �z

þ
Z

C

f ðsÞd�s
�s� �z

þ
�nz

nz

Z
C

ðs� zÞf ðsÞd�s
ð�s� �zÞ2

" #
; z 2 C: ð18Þ
Let qðzÞ be a weight given by
qðzÞ ¼ ððz� csÞðz� ceÞÞ
�1

2; ð19Þ

whose value for z 2 C is defined as the limit from the right of the branch given by a branch cut along C and zqðzÞ ¼ 1 at infin-
ity [17]. The two Muskhelishvili integral equations then are
ðI �M3qM1q�1ÞX̂ðzÞ ¼ �aþ �b
�nz

nz
; z 2 C; ð20Þ

ðI �M2q�1M1qÞx̂ðzÞ ¼ �az� �b�z; z 2 C: ð21Þ
The stress or displacement field in the plane can be computed once X̂ðzÞ or x̂ðzÞ is solved for on C. The normalized stress
intensity factors follow from
FðcsÞ ¼
i
ffiffiffi
2
p

r1
ffiffiffi
a
p M1q�1X̂ðcsÞ lim

z!cs

qðzÞ
ffiffiffiffiffiffiffiffiffiffiffi
dsðzÞ

p
; z 2 C; ð22Þ

FðceÞ ¼ �
i
ffiffiffi
2
p

r1
ffiffiffi
a
p M1q�1X̂ðceÞ lim

z!ce

qðzÞ
ffiffiffiffiffiffiffiffiffiffiffi
dsðzÞ

p
; z 2 C; ð23Þ

FðcjÞ ¼ �
nðcjÞM1qx̂ðcjÞ

r1
ffiffiffiffiffiffi
2a
p lim

z!cj

ðqðzÞ
ffiffiffiffiffiffiffiffiffiffiffi
dsðzÞ

p
Þ�1

; z 2 C; j ¼ s; e; ð24Þ
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where dsðzÞ is arc length measured from the closest crack tip.
The integral equations (20) and (21) are both of Fredholm’s second kind when C is smooth. Let us focus on their differ-

ences. One can show
qM1q�1X̂ðzÞ ¼ d
dz
ðq�1M1qx̂ðzÞÞ: ð25Þ
Assume that C contains a corner, called kink, with the asymptotic shape of a right angle and with vertex located at a point ck.
Then (20) and (21) are not of Fredholm’s second kind, but they are still solvable. Using variable separation one can show that
close to ck the density X̂ðzÞ asymptotically behaves as ðz� ckÞ

k�1, where 0:5 < k < 1 is the solution with smallest positive
non-zero real part to
k ¼ sin
k3p

2

� �
: ð26Þ
The density x̂ðzÞ is better behaved, as can be seen in (25). Its leading behavior can be described by a constant plus a term
proportional to ðz� ckÞ

k.

4. Regularization and special-purpose interpolatory quadrature

The double-layer type kernels in (5), (8) and (9) and the related kernels of M2 and M3 in (20) and (21) are smooth on
smooth C. Analytical limits exist for s! z and to use these limits in the discretization process is standard practice. Since
also the layer densities are smooth, the Nyström method with composite Gauss–Legendre/Jacobi quadrature is very efficient.
When C has corners, the kernels are not smooth even though analytical limits exist for s! z as long as z is not in a vertex.
Neither are the layer densities smooth and Gaussian quadrature will not be accurate. The problem of simultaneously resolv-
ing the density and the kernel across a corner is difficult. One can use intense panel refinement or product integration with
the densities represented in terms of tailor-made basis functions [7,15,17]. While tailor-made basis functions can yield accu-
rate results with few discretization points, their construction relies on analytical methods which are hard to apply general
situations. Therefore, we shall focus on panel refinement and try to make it as efficient as possible. The idea is to refine the
mesh only as much as is required to resolve the density in terms of polynomials. The resolution of the kernel itself is taken
care of by other means. Let us in the remainder of this section assume that the density is resolved.

A simple way to let the resolution of a double-layer kernel across a corner be controlled by the regularity of the layer
density alone is by subtracting and adding the layer density, possibly multiplied with some smooth function, in the numer-
ator of the kernel and then use a mix of analytic and numerical integration. This old technique, called regularization in this
paper, is common for the computation of the Cauchy principal value of singular operators such as M1 of (16). But it can be
applied to all integral operators whose action on some function is known analytically. Some examples now follow:

The action of M1 on the functions qðzÞ and 1=qðzÞ of (19) on an open arc C can be evaluated analytically. For complex f ðzÞ
belonging to a certain weighted L2 space and by subtracting and adding f ðzÞqðsÞ or f ðzÞ=qðsÞ in the numerator of the kernel
one can show the regularizations [17]
M1qf ðzÞ ¼ 1
pi

Z
C

ðf ðsÞ � f ðzÞÞqðsÞds
s� z

; z 2 C; ð27Þ

M1q�1f ðzÞ ¼ 1
pi

Z
C

ðf ðsÞ � f ðzÞÞds
qðsÞðs� zÞ þ z� cs þ ce

2

� �
f ðzÞ; z 2 C; ð28Þ
where the right-hand sides can be efficiently discretized with composite Gauss–Legendre/Jacobi quadrature. The action of
the integral operator in (8) on the function UðzÞ ¼ 1 can be evaluated analytically by rewriting it as a sum of the imaginary
parts of Ngr þ 1 different contour integrals of Cauchy type and with constant densities – one for each grain and one for the
exterior domain – and use of the Cauchy integral formula. Subtraction and addition of UðzÞaðsÞ in the numerator of the kernel
gives the regularization
1
p

Z
C

UðsÞaðsÞI ds
s� z

� �
¼ ðbðzÞ � 2r0ÞUðzÞ þ

1
p

Z
C
ðUðsÞ � UðzÞÞaðsÞI ds

s� z

� �
; z 2 C: ð29Þ
The smoother UðsÞ is across the corner, the better Gaussian quadrature should work. The limit of the kernel is not needed
since UðsÞ � UðzÞ vanishes for s! z. It is also possible to regularize M2q�1 by expressing it in terms of M1q�1. However, even
if the density is resolved across the corner, the kernel of the regularized M2q�1 operator will contain components that vary a
lot in their phase angles and Gaussian quadrature will not work well.

When regularization is not efficient, such as in the situation just described or when the layer density has a jump discon-
tinuity across a corner, one can resort to more efficient special-purpose interpolatory quadrature. We refer the reader to Ref.
[16], which gives a detailed account of how this recent technique can be applied to double-layer and Cauchy singular kernels.

We remark that when the mesh is refined close to a singular point ck, there will generally be a loss of precision in the
relative placement of the discretization points due to finite precision arithmetic. This effect is more noticeable for the spe-
cial-purpose interpolatory quadrature than for regularization. The former technique uses relative distances between discret-
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ization points more heavily than the latter. Therefore, when special-purpose interpolatory quadrature [16] is used in our
numerical examples, we create local coordinate systems by translating a region of the mesh around each ck so that ck is
at the origin. Relative distances within these regions are then calculated using local coordinates.

5. Graded meshes

Assume that we want to perform piecewise ðm� 1Þth degree polynomial interpolation Pf ðtÞ of a function f ðtÞ on the inter-
val t 2 ½0;1� and that f ðtÞ behaves as tm; m > 0, close to t ¼ 0. Assume, further, that we divide ½0;1� into sþ 1 subintervals,
specified by s breakpoints tj and that we place m interpolation points on each subinterval with the same relative spacing.
How should the subintervals be placed as to minimize the interpolation error kf ðtÞ � Pf ðtÞk1? This approximation problem
is treated in Chapter 4.2.5 of Atkinson [1]. One idea is to place the breakpoints according to
tj ¼
j

sþ 1

� �g

; j ¼ 1;2; . . . ; s; ð30Þ
where g is a grading exponent which depends on m and m. In the context of solving integral equations with fixed singularities
at points ck, an otherwise uniform mesh which is refined according to (30) on each side of a ck is called a graded mesh. The-
oretical estimates for the grading exponent, which should restore the convergence rate (of the solution itself – not of the
iterative solver) to that of a smooth kernel, are given in Chapter 8 of Ref. [1].

In numerical experiments we found it difficult to achieve good results with the grading (30). Better results were obtained
with the following straight forward procedure: Choose m ¼ 0:6 irrespective of the true value of m, which could be difficult to
obtain in general situations anyhow. Choose m ¼ 16 and place the nodes according to Gauss–Legendre quadrature. Take
f ðtÞ ¼ t0:6 and a value of s and place the breakpoints so that kf ðtÞ � Pf ðtÞk1 is minimized via a purely numerical procedure
which computes the interpolation at 1000 equispaced points on each subinterval. An example: the breakpoints for s ¼ 4
are t1 � 9:49� 10�7; t2 � 9:61� 10�5; t3 � 3:48� 10�3; t4 � 7:13� 10�2. We call an otherwise uniform mesh which is re-
fined according to this procedure on each side of a ck an aggressively graded mesh.

A less economical, but much simpler, way to make a graded mesh is to use binary subdivision of the interval [0,1] and
place the breakpoints according to
tj ¼ 2j�s�1; j ¼ 1;2; . . . ; s: ð31Þ
We call an otherwise uniform mesh which is refined according to (31) on each side of a ck a simply graded mesh. An advantage
with the simply graded mesh is that, if at least moderately high order quadrature is used, the refined quadrature panels on
opposite sides of a ck often can be considered as lying far away from each other [16]. Special-purpose interpolatory quad-
rature may only be needed on the two refined panels closest to ck.

6. Direct compressed inverse preconditioning

Several authors, for example Martinsson and Rokhlin, have presented compressed factorizations of inverses to entire
N � N system matrices arising from Nyström discretizations of integral equations which can be used as fast direct solvers
under certain conditions [22]. A representation of the inverse is constructed at a cost proportional to N. The inverse is appli-
cable to a right-hand side at a cost proportional to N. The word ‘compressed’ refers to data structures in this procedure. The
leading idea is to exploit, in an hierarchical way, that the system matrix has low-rank off-diagonal blocks [22].

We shall construct compressed inverses to Ns � Ns submatrices of system matrices. These inverses act as right precondi-
tioners and are chosen so that the regularity of the layer density is improved. So, in addition to improving the spectral prop-
erties of the system matrix, the inverse preconditioner also enables a polynomial representation of the layer density with
much fewer terms. ‘Compressed’ here refers to this latter property. For the electrostatic problem we, too, shall take advan-
tage of hierarchies of low-rank blocks and make the cost of construction of our compressed inverse proportional to Ns.

6.1. Splitting

Assume that we have a second kind integral equation
ðI þ KÞlðzÞ ¼ f ðzÞ; z 2 C; ð32Þ
where f ðzÞ is a piecewise smooth right-hand side, lðzÞ is an unknown layer density, and K is a integral operator which chiefly
is compact but contains a finite number Nfs of fixed singularities, or similar complications, at boundary location
ck; k ¼ 1; . . . ;Nfs. Let Ck denote a small part of the boundary surrounding ck and let the union of all Ck be CS. Let C0 denote
the remaining part of the boundary so that C ¼ C0 [ CS. Let � k be a projection operator that is zero everywhere on C except
for on Ck, where it is identity. Now split K into a non-compact part KH and a remaining compact part K� so that
K ¼ KH þ K�; KH ¼
XNfs

k¼1

� kK� k: ð33Þ



8826 J. Helsing, R. Ojala / Journal of Computational Physics 227 (2008) 8820–8840
In many applications of interest ðI þ KHÞ�1 is a bounded operator. The preconditioned equation
ðI þ ðI þ KHÞ�1K�ÞlðzÞ ¼ ðI þ KHÞ�1f ðzÞ ð34Þ
is then a Fredholm second kind integral equation, see Chapter 8 of [1]. This is standard, but we shall not use it. We shall in-
stead use right preconditioning
ðI þ K�ðI þ KHÞ�1Þ~lðzÞ ¼ f ðzÞ; ð35Þ
where ~lðzÞ ¼ ðI þ KHÞlðzÞ is a new unknown. An important difference between the densities lðzÞ of (34) and ~lðzÞ of (35) is
that the latter is more likely to be a piecewise smooth quantity than the former. Smoothness of the solution can be used for
compression of the inverse ðI þ KHÞ�1.

6.2. Discretization on two meshes

Assume that the boundary is parameterized as zðtÞ, where t is a parameter. We shall solve (35), and for comparison
also (32), using Nyström discretization based on m-point composite quadrature in t. For this, assume that we have a
coarse mesh of quadrature panels on C generating a grid of discretization points and a partition C ¼ CS [ C0 such that
the right-hand side f ðzðtÞÞ is resolved on C and such that the kernel of K� is resolved in both variables on C. This means
that the action of K� on a function, smooth on C0 and non-smooth on CS, can be accurately computed using composite
Gaussian quadrature on C0 and suitable composite product integration on CS and the result is a function that is resolved
on C. Now only the inverse ðI þ KHÞ�1 needs to be resolved on a mesh that is further refined, but we shall temporarily
also further refine K�. We call a mesh that coincides with the coarse mesh on C0 but is simply or aggressively graded on
CS a partially refined mesh. The degree of refinement is determined by that lðzðtÞÞ should be resolved by Nyström
discretization.

Let Iprr;Kprr;K
H

prr and K�prr be matrices corresponding to a discretization of the operators I;K;KH and K� relying on compos-
ite Gaussian quadrature, where subscript ‘prr’ indicates the partially refined mesh. Let fprr be a column vector corresponding
to a discretization of f ðzÞ. Then (32) and (35) are discretized as
ðIprr þ KprrÞlprr ¼ fprr; ð36Þ
ðIprr þ K�prrðIprr þ KH

prrÞ
�1Þ~lprr ¼ fprr: ð37Þ
We shall also need the corresponding discretizations Icoa and K�coa on the coarse mesh, and the diagonal matrices Wprr and
Wcoa containing the Gaussian quadrature weights used in the two discretizations.

6.3. Prolongation and restriction

Let P be a discretization of a prolongation operator that performs piecewise ðm� 1Þth degree polynomial interpolation in
t from the coarse mesh to the partially refined mesh. This means that if a is a column vector corresponding to the discret-
ization of a piecewise polynomial aðtÞ of degree m� 1 on the coarse mesh, then Pa is a column vector of discretized values of
aðtÞ on the partially refined mesh – a prolonged vector. The trivial relation ðPaÞT ¼ aTPT, where superscript ‘T’ denotes trans-
position, indicates how row vectors are prolonged.

Let Q be a discretization of a restriction operator that performs piecewise ðm� 1Þth degree polynomial interpolation in
the other direction, that is, from the partially refined mesh to the coarse mesh. The sparse block-matrices P and Q coincide
with the identity matrix on C0 and
QP ¼ Icoa: ð38Þ
The assumptions that f ðzÞ is resolved and the kernel of K� is resolved in both its variables on the coarse mesh can be ex-
pressed as
fprr ¼ Pfcoa; ð39Þ
K�prrW

�1
prr ¼ PK�coaW�1

coaPT: ð40Þ
6.4. Compression

Use of (39) and (40) in (37) gives
~lprr þ PK�coaW�1
coaPTWprrðIprr þ KH

prrÞ
�1~lprr ¼ Pfcoa: ð41Þ
Multiplication of (41) with PQ from the left and (38) imply
~lprr ¼ PQ ~lprr: ð42Þ
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We define
Fig. 1.
on C1;n
~lcoa ¼ Q ~lprr: ð43Þ
Multiplication of (41) with Q from the left and use of (38), (42) and (43) transforms (41) into an equation on the coarse mesh
ðIcoa þ K�coaRÞ~lcoa ¼ fcoa; ð44Þ
where the matrix
R ¼W�1
coaPTWprrðIprr þ KH

prrÞ
�1P ð45Þ
can be viewed as a compressed right inverse preconditioner, that can be computed and stored once and for all. The matrix R
is the identity matrix modified with blocks corresponding to interaction from Ck to Ck; k ¼ 1; . . . ;Nfs, on the coarse mesh.

Note that, once (44) is solved, a discretized approximation to lðzÞ on the coarse mesh can be recovered via
lcoa ¼ S~lcoa; ð46Þ
S ¼ Q ðIprr þ KH

prrÞ
�1P: ð47Þ
Often, in applications, one is not interested in lðzÞ itself. Rather, lðzÞ is to be used in some integral. The matrices Q and S are
then not needed. But R~lcoa comes in handy as a discretized approximation of lðzÞ multiplied with quadrature weight cor-
rections appropriate for integration with piecewise smooth functions. For example, with N nodes tk and weights wk associ-
ated with integration in t on the coarse mesh, q of (10) can be obtained as
q ¼ �r0

XN

k¼1

ðR~lcoaÞkRf�ez0ðtkÞwkg: ð48Þ
A crude check if CS is large enough so that K� is resolved is to examine the test vector t given by
t ¼ K�coae; ð49Þ
where e is a vector of ones. If the coefficients ak; k ¼ 0; . . . ;m� 1, of t in an expansion in Legendre polynomials on each panel
decay fast enough, then K� is resolved. We shall monitor the ratio jam�1=a0j on each panel and use the largest of these num-
bers as a measure of the resolution of K�.

7. Recursive compressed inverse preconditioning

The block-diagonal matrix R of (45) could be expensive to compute as it stands. The computation of KH

prr may involve a fair
amount of special-purpose interpolatory quadrature on an aggressively graded mesh and the cost of solving the system
ðIprr þ KH

prrÞ
�1P grows as the number of subintervals on each Ck cubed. We shall now show how the blocks of R may be com-

puted in a much cheaper way, at a cost that grows only linearly in the number of subintervals. In fact, the cost will be so low
so that the aggressively graded meshes are not needed. We can use simply graded meshes, which require less special-pur-
pose interpolatory quadrature and no grading exponent whatsoever. For simplicity we first assume that there is only one
fixed singularity, some corner at c1, and that CS ¼ C1 consists of two coarse panels – one on each side of c1. See Fig. 1, upper
left image, for an illustration with a corner in shape of a wedge. We use m ¼ 16, that is, 16-point composite quadrature.
coarse mesh

refined n=5

i=4, a

i=4, b

i=4, c

Placement of panels on C1 of a corner in the shape of a wedge. Upper left: Panels of the coarse mesh on C1. Lower left: Panels of a n-ply refined mesh
¼ 5. Right: Panels on C1i upon which the grids Gia;Gib , and Gic are constructed for i ¼ 4 and n ¼ 5. Note that Gia and Gib coincide for i ¼ 1.
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7.1. Grids and submatrices

Families of panels and grids on subsets of C1 are now introduced. See the lower left and the right images of Fig. 1. Let C1

be simply graded n times so that there are 2ðnþ 1Þ panels on C1. Let C1i denote the part of C1 covered by the 2ðiþ 1Þ panels
closest to c1 and let Gia denote a grid of 32ðiþ 1Þ quadrature points placed on these panels. Place four panels of equal length
in parameter on C1i and let Gib denote a grid of 64 points placed on these panels. Place two panels of equal length in param-
eter on C1i and let Gic denote a grid of 32 points placed on these panels. Let Piac be the prolongation operator from Gic to Gia

and let Piab;Pibc be defined in a similar fashion. Actually, the index i in Pibc is not necessary. This operator always acts from a
32-point grid to a 64-point grid. Note also that the upper left and the lower right 16� 16 blocks of Piab are identity matrices,
Pði�1Þac is a submatrix of Piab, and that Piac ¼ PiabPbc .

We need to extract submatrices and the following convention will be used: Let A be a Ni � Ni matrix corresponding to
discretization of some operator on Gia;Gib, or Gic . With the split
A ¼ AH þ A�; ð50Þ

we mean that AH

jk ¼ Ajk; j; k ¼ 17; . . . ;Ni � 16, and that the rest of the entries of AH are zero. The symbol ‘w’, thus, extracts
elements in the center. The symbol ‘�’ extracts elements in a frame of width 16 around the center. The split (50) can be seen
as a discrete analogy of (33) for a single corner. Now let Kia and Kib be discretizations of KH on Gia and Gib. Let Ff�g denote an
operator which creates a frame of width 16 of zeros around its argument. Then, for example,
KH

ia ¼ FfKði�1Þag; i ¼ 2; . . . ;n: ð51Þ
Let Wia and Wib be diagonal matrices with Gaussian weights from the discretizations on Gia and Gib as entries. We observe
that
W�1
ib ¼ 2ðn�iÞW�1

nb : ð52Þ
7.2. The recursion

Define the 32� 32 matrices
Ri ¼ 2ðn�iÞPT
iacWiaðIia þ KiaÞ�1Piac; i ¼ 1; . . . ;n ð53Þ
and let Wnc be a diagonal matrix of Gaussian weights for Gnc . Then W�1
nc Rn is the block of R of (45) corresponding to inter-

action from C1 to C1. We now seek a relation between Ri and Ri�1

Eq. (53) can be rewritten using splitting of Kia
Ri ¼ 2ðn�iÞPT
bcPT

iabððWiaðIia þ KH

iaÞ
�1Þ�1 þ K�iaW�1

ia Þ
�1PiabPbc: ð54Þ
The spectral radius of the matrix
K�iaðIia þ KH

iaÞ
�1 ð55Þ
could in general depend on K , the corner opening angle, the choice of grading, and details in the split of Kia. In all our exam-
ples, however, this spectral radius is well below unity. Using an approximation similar to (40),
K�iaW�1
ia ¼ PiabK�ibW�1

ib PT
iab; ð56Þ
which holds if the operator corresponding to K�ib is resolved on Gib, and a Neumann series argument we can write (54) as
Ri ¼ 2ðn�iÞPT
bcððP

T
iabWiaðIia þ KH

iaÞ
�1PiabÞ�1 þ K�ibW�1

ib Þ
�1Pbc ð57Þ
and use (51)–(53) and the structure of Piab to get the recursion
Ri ¼ PT
bcð2FfR�1

i�1g þ ðI
�
nb þ K�ibÞW

�1
nb Þ

�1Pbc; i ¼ 1; . . . ;n; ð58Þ
where
2FfR�1
0 g ¼ ðI1b þ KH

1bÞðW
�1
nb Þ

H ð59Þ
is used to start the recursion. We point out that each recursion step in (58) corresponds to one binary subdivision of a simply
graded mesh.

The recursion (58) and (59) holds for a corner where the ‘arms’ may have curvature. For a corner in the shape of a wedge,
that is, when the ‘arms’ are straight lines, scale invariance gives K�ib ¼ K�nb and KH

ib ¼ KH

nb, and (58), (59) simplify to the fixed-
point iteration
Ri ¼ PT
bcð2FfR�1

i�1g þ ðI
�
nb þ K�nbÞW

�1
nb Þ

�1Pbc; i ¼ 1; . . . ; ð60Þ
2FfR�1

0 g ¼ ðInb þ KH

nbÞðW
�1
nb Þ

H
: ð61Þ
A minor speedup could be achieved by using the Schur–Banachiewicz inverse formula [18] for (60).
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8. Direct compressed inverse preconditioning for the crack problem

We choose (21). For brevity we include the weight q in the definition of M1 and the weight q�1 in the definition of
M2. Operator splitting in fixed singular and compact parts gives M2 ¼ MH

2 þM�
2. We also split M1 ¼ MH

1 þM�
1 in a similar

fashion where MH

1 is larger than MH

2 . Let CS1 be the part of C where MH

1 is non-zero and let CS2 be the (smaller) part
where MH

2 is non-zero. We demand that M�
1 is resolved in the variable of integration on C and in the other variable

on C0 [ CS2 in the sense of Section 6.2. Right preconditioning of (20) in the style of (35) results in
I � M�
2M�

1 þM�
2MH

1 þMH

2 M�
1

	 

I �MH

2 MH

1

	 
�1
� �

~̂xðzÞ ¼ �az� �b�z: ð62Þ
While all three composed operators in the first closed parenthesis on the left-hand side are compact, only the two first pro-
duce smooth output. The operator MH

2 M�
1 produces non-smooth output so ~̂xðzÞ cannot be a piecewise smooth function. If we,

however, proceed to split
~̂xðzÞ ¼ ~̂x1ðzÞ þMH

2
~̂x2ðzÞ; ð63Þ
where ~̂x2ðzÞ is defined as zero except for on CS2, we can solve the system
~̂x1ðzÞ �M�
2 M�

1 þMH

1

	 

I �MH

2 MH

1

	 
�1 ~̂x1 þMH

2
~̂x2

� �
ðzÞ ¼ �az� �b�z; z 2 C; ð64Þ

~̂x2ðzÞ �M�
1 I �MH

2 MH

1

	 
�1 ~̂x1 þMH

2
~̂x2

� �
ðzÞ ¼ 0; z 2 CS2 ð65Þ
and get two smooth solutions ~̂x1ðzÞ and ~̂x2ðzÞ.
Discretization of (64) and (65) in the style of (37) gives a system where four quantities per corner need to be

compressed:
W I�MH

2 MH

1

	 
�1
; WMH

1 I�MH

2 MH

1

	 
�1
;

W I�MH

2 MH

1

	 
�1
MH

2 ; and WMH

1 I�MH

2 MH

1

	 
�1
MH

2

ð66Þ
and where we have omitted the subscript ‘prr’. Direct compression as in (45) is straight-forward, while recursive compres-
sion is harder to implement.
9. Plain recursive compression

The compressed preconditioned equation (44) can, via (46), be written as a compressed un-preconditioned equation for
the original variable lcoa
ðIcoa þ ðS�1 � IcoaÞ þ K�coaRS�1Þlcoa ¼ fcoa: ð67Þ
Here the columns of the blocks of S can be viewed as special basis functions, the entries of RS�1 correspond to quadrature
weight corrections, and S�1 � Icoa corresponds to a discretization of KH. While clumsier than (44) the compressed un-precon-
ditioned equation (67) might have advantages in complicated settings where K is not a just compact operator but a sum of a
compact operator and an operator whose spectrum one does not whish to alter.

In order to make (67) efficient we need a recursive scheme for S. For this define, in analogy with (53),
Si ¼ Q icaðIia þ KiaÞ�1Piac; i ¼ 1; . . . ;n; ð68Þ
where Sn is the block of S of (47) corresponding to interaction from C1 to C1. Use of splitting, (56), and a Neumann series
argument gives
Si ¼ Q cbQ ibaðIia þ KH

iaÞ
�1Piab PT

iabWiaðIia þ KH

iaÞ
�1Piab

� ��1
PT

iabWiaðIia þ KH

iaÞ
�1Piab

� ��1
þ K�ibW�1

ib

� ��1

Pbc; ð69Þ
which can be written
Si ¼ Q cb 2FfSi�1gFfR�1
i�1g þ ðW

�1
nb Þ

�
� �

2FfR�1
i�1g þ ðI

�
nb þ K�ibÞW

�1
nb

� ��1
Pbc; i ¼ 1; . . . ;n ð70Þ
and together with
FfS0g ¼ ðI1b þ KH

1bÞ
�1 ð71Þ
be used in tandem with (58) and (59) as a recursion for Sn. For a corner in the shape of a wedge, K�ib and KH

1b can be replaced
with K�nb and KH

nb.
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10. Small-scale numerical examples

We first demonstrate the performance of our techniques for a few small setups, each exemplifying some interesting geo-
metric feature. The goal is to compute the quantity q of (2) or F of (15) as accurately and cheaply as possible using the GMRES
iterative solver [25] with a low-threshold stagnation avoiding technique [16] for the main linear system. The code is imple-
mented in MATLAB and executed on a SunBlade 100 workstation. System matrices are formed explicitly. Naturally, with this
mix of built-in and coded MATLAB software and outdated hardware, timings will not be indicative of how fast things really can
go. We still give timings to demonstrate the speed gains of the methods proposed. But bear in mind, that memory require-
ments in GMRES (Krylov subspace vectors plus the diagonal block matrix R), rate of convergence, and achievable accuracy
are the important properties that are carried over to more elaborate implementations and larger problems. As reference
solutions for q and F we shall use estimated ‘best values’ from convergence studies on a large number of meshes.

10.1. The Triangle Problem

We solve an electrostatic problem. Fig. 2 depicts an equilateral triangle with side length two and r ¼ 1000 placed, away
from the origin, in a surrounding medium with r ¼ 1 and with electric field e ¼ i. The opening angles p=3 suggest quite
strong self-interaction of the layer densities across the corners. According to the analysis of Section 2, the densities UðzÞ
of (8) and lðzÞ of (9) are continuous while qðzÞ of (5) has singularities and (9) should give the most well-conditioned system.
We construct a coarse mesh with p panels of equal length on each triangle side. Experiments show that p ¼ 4 is sufficient to
resolve all densities away from the corners. We shall use partially refined meshes that are either simply graded, ‘sig’, or
aggressively graded, ‘agg’. The ‘sig’ meshes are constructed by repeated binary subdivision of the two coarse panels closest
to each corner. Regularization ‘reg’ can be applied to all three equations (5), (8) and (9). Regularization for (8) is given by
(29). The same formula holds for (9) since aðsÞ and bðzÞ are constant in this example, while (5) can be regularized using
qðsÞnz�ns ¼ qðsÞnz�ns � qðzÞ þ qðzÞ.

Fig. 3 compares results obtained with the unpreconditioned formulation (36) for (5), (8) and (9) using ‘sig’ with and
without ‘reg’. Regularization has a major advantage over the common use of analytical limits in terms of rate of convergence
of q for (8), as predicted, and also for (5), which is unexpected and may be explained by the high symmetry of the problem.
Regularization also allows for higher achievable accuracy. The most accurate results are produced by (9). It outperforms (5)
and (8) with a factor equal to the conductivity ratio. The left image of Fig. 4, where also special-purpose interpolatory quad-
rature ‘spq’ [16] is used, shows that ‘agg’ save a factor of about three in terms of discretization points compared to ‘sig’. The
standard equation (5) is particularly poor. For one thing, it needs about twice the number of GMRES iterations as do the other
two equations, see the right image of Fig. 4.

Clearly, Eq. (9) is the most efficient in this case. With 35 binary subdivisions, that is, 3552 discretization points on the
‘sig’ mesh, and 39 GMRES iterations the estimated relative error in q is 5� 10�15. This corresponds to one of the ‘	 Eq.
(9) sig+reg’ experiments in Fig. 3. The computing time is around 35 s. With 33 GMRES iterations and 1152 discretization
points on the ‘agg’ mesh the estimated relative error in q is 2� 10�15. This corresponds to one of the ‘M Eq. (9) agg+spq’
experiments in Fig. 4. The computing time is around 5 s.
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Fig. 2. The Triangle Problem.
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Fig. 4. Results for the Triangle Problem with an aggressively graded mesh. See Section 5 for the definition of breakpoints. The right image shows the
number of GMRES iterations needed to reach a stopping criterion threshold of �mach in the relative residual.
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We now apply direct compressed inverse preconditioning (44) and (45) to (9) in combination with ‘agg+spq’. We first
need to determine CS. If we let CS include only the part of the boundary covered by the six coarse panels upon which grading
is performed, the resolution of K�, see (49), is only 10�9. The relative error in q is about 10�12. Instead we let CS cover twelve
coarse panels, two on each side of each corner. Now the resolution of K� is 10�14. With ten breakpoints on the coarse panels
closest to each corner, only nine GMRES iterations, and 192 discretization points on the coarse mesh we solve (44) and (45)
and get an estimated relative error in q of 4� 10�15. The memory requirements in GMRES are reduced by 90% compared to
(36) with ‘sig+reg’ and by 65% compared to (36) with ‘agg+spq’. The computing time is down to around two and a half
seconds.
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Recursive compressed inverse preconditioning (44) and (60) can, slightly modified, also be applied to (9). Since CS now is
larger than assumed in Section 7, the definitions of Cki and Gia;Gib, and Gic for each corner must be changed: Cki is now the
part of the boundary covered by the 2ðiþ 2Þ panels closest to ck, each Gia is a grid of 32ðiþ 2Þ points, each Gib is a grid of 96
points constructed by placing six panels on Cki and they are not of equal size – two are twice as long as the remaining four,
each Gic is a grid of 64 points constructed by placing four panels of equal size on Cki. With 35 steps in (60) and ‘spq’ in (61)
we produce results at least as good as to those obtained with (44) and (45). The computing time is down to less than 1 s.

We finally apply plain recursive compression (67), (60) and (70) to (9). The value of q, with 35 steps in (60) and (70) and
‘spq’ in (61) and (71), is almost identical to that produced by (44) and (60). The number of GMRES iterations is 17, which
corresponds to the number required on a coarse mesh using only ‘spq’. See Fig. 4, right image and zero breakpoints. One
can say that plain recursive compression retains the conditioning and the number of unknowns of the original equation dis-
cretized on a coarse mesh, while giving the accuracy of a discretization on a partially refined mesh. The computing time is
around one and a half second.

10.2. The Segmented Circle Problem

Fig. 5 depicts an inclusion with unit circular boundary consisting of three equisized segments with different conductiv-
ities, centered off-origin, in a surrounding medium. The opening angles of the corners are larger than in the Triangle Problem,
but some boundary parts are curved and there is less symmetry. The density UðzÞ is continuous and makes (8) a candidate for
regularization ‘reg’. The density lðzÞ of (9) has jump discontinuities and should benefit from special-purpose interpolatory
quadrature ‘spq’ [16].

We construct a coarse mesh with p panels of equal length on each straight boundary part and 2p panels of equal length on
each curved boundary part. Experiments show that p ¼ 2 is sufficient to resolve all densities away from the corners. Fig. 6
compares results obtained with (36) on partially refined meshes that are simply graded, ‘sig’, with and without ‘reg’ and
‘spq’. The expected positive impact of ‘reg’ for (8) and ‘spq’ for (9) in terms of convergence are clearly seen, while (5), with
its singular density, is not improved at all. Fig. 7 shows that aggressive grading ‘agg’ saves a factor of about three in terms of
memory requirements. A difference compared to the Triangle Problem occurs for (8): ‘spq’ is now an even better choice than
‘reg’ both in terms of convergence, see Fig. 6, and in terms of the number of GMRES iterations needed, see the right image of
Fig. 7.

Again, Eq. (9) is the most efficient. It outperforms (5) and (8) in terms of achievable accuracy with a factor equal to the
highest conductivity ratio. With 14 binary subdivisions, that is, 2976 discretization points on the ‘sig’ mesh, and 21 GMRES
iterations the estimated error in q is 10�15. This corresponds to one of the ‘M Eq. (9) sig+spq’ experiments in Fig. 6. The com-
puting time is around 25 s. With 21 iterations and 1284 discretization points on the ‘agg’ mesh we get a value of q which
coincides with the reference solution. This corresponds to one of the ‘M Eq. (9) agg+spq’ experiments in Fig. 7. The comput-
ing time is around 5 s.

We now apply direct compressed inverse preconditioning (44) and (45) to (9) in combination with ‘agg+spq’. CS includes
the part of the boundary covered by the coarse panels upon which ‘agg’ is performed. With five breakpoints on the coarse
panels closest to each triple-junction, only 14 GMRES iterations, and 288 discretization points on the coarse mesh we solve
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Fig. 5. The Segmented Circle Problem.
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Fig. 7. Results for the Segmented Circle Problem with an aggressively graded mesh.

J. Helsing, R. Ojala / Journal of Computational Physics 227 (2008) 8820–8840 8833
(44) and (45) and again get a value of q which coincides with the reference solution. The memory requirements in GMRES are
reduced by 80% compared to (36) with ‘sig+spq’ and by 50% compared to (36) with ‘agg+spq’. The computing time is down
to around two and a half seconds. Recursive compressed inverse preconditioning (44) and (58) can, slightly modified since
we have triple-junctions rather than corners, also be applied. With n ¼ 14 steps in (58) and ‘spq’ in (59) we produce almost
identical results to those obtained with (44) and (45). The computing time is down to less than 2 s.

We finally apply plain recursive compression (67), (58) and (70) to (9). The result, with n ¼ 14 steps in (58) and (70) and
‘spq’ in (59) and (71), is almost identical to that produced by (44) and (58). The number of GMRES iterations is 18, which
corresponds to the number of iterations required on a coarse mesh using only ‘spq’. See Fig. 7, right image and zero
breakpoints.
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10.3. The two circle problem

It is not necessary that the points ck and the intervals Ck, in the derivation of (44), correspond to actual singularities in K.
Compressed inverse preconditioning is also applicable when Ck corresponds to a region that in a more general sense is dif-
ficult, such as when the boundary falls back on itself or when disjoint boundary parts lie close to each other. Consider the
Two Circle Problem of Fig. 8. We use (9) with ‘spq’, a coarse mesh with 32 panels, and eight binary subdivisions on the four
coarse panels lying closest to the origin. We compare the performance of (36) to that of direct compressed inverse precon-
ditioning (44) and (45) and with CS being the eight coarse panels closest to the origin. Both methods produce q with an esti-
mated relative error of about 10�14. But the number of GMRES iterations needed for full convergence decrease from 161 to
nine, the memory requirements in GMRES are reduced by 85%, and the execution time is reduced by 75% as we switch from
(36)–(44). In this particular example, however, the hybrid method of images for circles developed by Cheng and Greengard
[2] is even more efficient.

10.4. The V-problem

Fig. 9 depicts an elastic plane with a crack in the shape of a V turned upside down. The computation of the normalized
stress intensity factor FðcsÞ of (15) in this setup with r1 ¼ r1yy is a benchmark problem treated by several authors [4,7,8,28].
The problem is well-conditioned. The most accurate result seems to be FðcsÞ ¼ 0:5207675522þ 0:6411159455i from [7].

A coarse mesh with p panels on each branch of the crack is constructed. Experiments show that p ¼ 3 is more than enough
to resolve the densities in (20) and (21) away from the kink. Fig. 10 compares results for simply and aggressively graded
meshes ‘sig’ and ‘agg’ with and without ‘spq’ for the M2 and M3 operators. The M1 operator is discretized via (27) and
(28). Note that without ‘spq’, Eq. (20), whose density is diverging, produces slightly better results for F than (21), whose den-
sity is continuous. With ‘spq’ the situation is reversed. There is a large positive impact in the convergence rate for (21), while
(20) is not affected and therefore not shown. The ‘spq’ also bounds the number of GMRES iterations needed to meet the stop-
ping criterion threshold for (21) as the mesh is refined, see Fig. 11. With 28 binary subdivisions in (21), that is, 992 points on
the ‘sig’ mesh, ‘spq’, and 21 iterations, the estimated relative error in FðcsÞ is 10�14. The computing time is 16 s. A similar
estimated error is achieved with 480 points on the ‘agg’ mesh, ‘spq’, and 22 iterations. The computing time is 6 s.

We now test inverse preconditioning (64) and (65) with direct compression of (66) on the ‘agg’ mesh. CS2 is the part of
the boundary covered by the two coarse panels closest to the kink and CS1 is the part of the boundary covered by the four
coarse panels closest to the kink. With 13 iterations and 96þ 32 ¼ 128 discretization points on the coarse mesh we get an
estimated relative error in FðcsÞ of 10�13. The computing time is 11 s. The memory requirements in GMRES are unchanged
compared to the use of (21) on the ‘sig’ mesh and twice as large compared to the use of (21) on the ‘agg’ mesh. So in this
particular example there is not much to gain by using compression. Compression could, however, be profitable speed-wise as
well as memory-wise for multiple right-hand sides and for large problems with relatively few kinks.
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11. Large-scale numerical examples

We conclude the experiments with some large-scale electrostatic computations for inclusions built up of perturbed hexa-
gons. The overall goal is to compute q of (2) via (5), (8) and (9) as accurately and rapidly as possible. We use the recursive
compressed inverse preconditioning (44) and (60) in all corners and triple-junctions. Special-purpose interpolatory quadra-
ture [16] is used in (61) and local coordinate systems consist of one coarse panel from each edge emanating from a vertex.
Linear systems are solved using GMRES as in Section 10, but the computer now is an Intel Core2 6400 at 2.13 GHz. The code
is mainly written in MATLAB, with time-critical parts written in C, such as the fast multipole method [13] with precision
� ¼ 10�13 used for matrix–vector multiplication.

A number Ngr of regular hexagonal grains are placed in a honeycomb-like pattern in the unit square. The structure is ran-
domized slightly as to avoid symmetries that may allow for a simpler solution. This is done by moving the grain vertices a
distance of one-tenth of the length of a grain side in a random direction. The largest structure used, with Ngr ¼ 5293, is dis-



0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

Number of binary subdivisions on innermost coarse panels

N
um

be
r o

f G
M

R
ES

 it
er

at
io

ns

Eq.(20) sig
Eq.(21) sig
Eq.(21) sig+spq

Fig. 11. GMRES iterations for the V-problem.

8836 J. Helsing, R. Ojala / Journal of Computational Physics 227 (2008) 8820–8840
played in Fig. 12. The conductivity rk of an individual grain is given by 10ck , where ck is a random variable. Two cases are
studied, differing in the range of the conductivities assigned. In the first case, ck is uniformly distributed in [�1,1]. In the
second case, ck is multiplied by a factor of three, highlighting the impact of higher conductivity ratios, while keeping the
structure the same as in the first case in all other respects. The conductivity of the background material is always given
by r0 ¼ 1 and the electric field is e ¼ i in both cases. We implement (5) and (9) as they stand. For (8) we introduce
U	ðzÞ ¼ UðzÞaðzÞ; z 2 C ð72Þ
and solve for U	ðzÞ in
U	ðzÞ � kðzÞ
p

Z
C

U	ðsÞI ds
s� z

� �
¼ 2r0kðzÞRf�ezg; z 2 C: ð73Þ
The formula (2) then reads
q ¼
Z

C
U	ðzÞIf�edzg: ð74Þ
The reason for choosing (73), which from a numerical viewpoint corresponds to a diagonal similarity transformation of (8), is
that (8), despite having a continuous unknown, has some negative characteristics when combined with the recursion for-
mula (60). These problems are alleviated as we switch to (73). To check for convergence in (60), we use the condition that
convergence has occurred at step i if
kRi � Ri�1kF=kRi�1kF < �mach; ð75Þ
where subscript ‘F’ denotes Frobenius norm. We construct a coarse mesh on C by placing p panels of equal length in param-
eter as well as in arc length on the shortest grain edge in the structure. On the other grain edges panels are placed so that all
the panels in the mesh have approximately the same length. That is, each edge in the structure consists of at least p panels.
Each panel, in turn, has 16 Gauss–Legendre nodes with accompanying suitably scaled weights.

We first vary the minimum number of panels p on a structure with Ngr ¼ 390 and rk 2 ½10�1;101�. We calculate q via the
three formulations for p ¼ 2;3; . . . ;20. As a reference solution we take the arithmetic mean of the 12 values of q computed
for p ¼ 4;5;6;7. Throughout this section we shall compute estimated absolute errors, rather than relative errors. The reason
is that as Ngr grows, the grained inclusion will, in a macroscopic sense, be close to a homogenized inclusion with conductivity
one. This, in turn, causes q to be small in magnitude. The estimated relative errors may oscillate as some structures will, by
chance, have q close to zero. One could interpret the absolute error in q as a relative error with respect to the geometric mean
of all conductivities involved. Fig. 13 shows that the proposed methods are stable for all three integral equation formulations
under rather serious overresolution and that the geometry is resolved already at p ¼ 3.

Having investigated resolution in p for a problem with a fixed number Ngr of grains we now turn to setups where we vary
Ngr while holding p fixed. We use p ¼ 3. A reference solution qref for each structure is computed as the arithmetic mean of the
q obtained using all three integral equation formulations with p ¼ 4. Figs. 14 and 15 show results for rk 2 ½10�1;101�. The
error grows slowly with Ngr, settling at around 10�14 for Ngr ¼ 5293. The number of iterations required to reach a relative



Fig. 12. A perturbed honeycomb structure consisting of 5293 grains. The conductivity varies between r ¼ 0:1 (light) and r ¼ 10 (dark). The background
material has conductivity r0 ¼ 1. There are 10,878 corners and triple-junctions in the structure.

J. Helsing, R. Ojala / Journal of Computational Physics 227 (2008) 8820–8840 8837
residual threshold of 10�16 seems to converge to around 105. The values of qref , not shown, range from about �0.9 to 0.5 and
slowly converge with Ngr to about 0:04
 0:04.

Figs. 14 and 15 do not disclose any significant difference between the formulations (5), (9) and (73) for the present con-
ductivity distribution, neither in terms of achievable accuracy nor in terms of iterations needed. However, the computations
of q via (9) and via (73) are somewhat faster than the computation via (5). The formulation (5), with diverging density, re-
quires between 40 and 70 steps in recursion (60) to reach the fixed point. The formulations (9) and (73), with bounded den-
sities, only require between 20 and 40 steps. Furthermore, some extra complex arithmetic is needed in (5) compared to (9)
and (73). As for memory requirements, considering the largest setup with Ngr ¼ 5293, the number of discretization points is
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Fig. 13. Estimated absolute errors for q of (2) using the integral equation formulations (5), (9) and (73) with varying degree of overresolution. The inclusion
consists of 390 grains. The reference value is taken as qref ¼ �0:0326509925268292.
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1141904. At 109 iterations this requires 1 Gb of memory for the storage of the Krylov subspace vectors. The 10,878 block-
matrices in the recursive compressed inverse preconditioner, one for each corner and triple-junction, need also be stored and
require about 200 Mb of RAM. A further 100 Mb is used by various vectors pertaining to discretization points, conductivity,
et cetera, giving a total of about 1.3 Gb of RAM required for the computation. The time required to compute q is dominated
by GMRES. For example, computing q on the structure depicted in Fig. 12 using (9), (10) takes 75 minutes total, of which 9% is
due to the recursive compressed inverse preconditioning.

We now turn to the second case with rk 2 ½10�3;103�. Stronger inhomogeneity makes the problem considerably harder
and more ill-conditioned. An error plot, similar to Fig. 14 but not shown, indicates that our methods still are equally stable
for the three formulations (5), (9) and (73), although two additional digits of accuracy are lost. Fig. 16, analogous to Fig. 15,
shows that the number of GMRES iterations keeps climbing without any tendency to have approached an upper limit at
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Fig. 15. GMRES iterations for Fig. 14. The stopping criterion threshold in the relative residual is set at 10�16.
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Fig. 16. Same as in Fig. 15, but the grain conductivities vary between 10�3 and 103.
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Ngr ¼ 885, which is the largest setup that can be handled due to memory constraints. This phenomenon is well known and
sometimes called ‘critical slowing down’ in the applied physics literature, where numerical experiments on large structures
often are done on discrete lattice networks [6,20]. Some long-range preconditioning would helpful, in addition to the local
preconditioning supplied by our recursive compressed inverse preconditioner.

The efficiency of (5), (8) and (9) for the inclusion problem depends on the conductivity distribution, see Section 2. In the
small-scale experiments of Section 10 we used distributions intended to favor (9) in order to demonstrate this point. In the
present section we use conductivity distributions for the grains with a geometric mean of approximately r0, hoping that nei-
ther of the formulations should be obviously favored. And indeed, no major differences in efficiency were discovered. This is
remarkable, considering the different regularities of the involved densities and only possible thanks to the recursive com-
pressed inverse preconditioner. Equipped with this tool, one is more free to choose a formulation which suits a given prob-
lem from a modeling point of view.

12. Conclusions

The literature on solving elliptic boundary value problems using integral equation methods is rich on ‘standard practice’
accumulated from successful experience with setups involving smooth and well-separated boundaries. This paper shows
that when it comes to problems on domains with corners, standard practice on fundamental issues can be much improved
upon. At least if high accuracy in combination with speed is of concern. We give a series of electrostatic and elastostatic
examples in familiar two-dimensional settings. General actions, such as choosing an alternative integral equation formula-
tion more fit for the problem at hand, using special-purpose interpolatory quadrature, and a mesh whose grading is deter-
mined in a novel manner, are shown to improve on the order of convergence and lead to large savings in storage and
computing time.

The use of compressed inverse preconditioners, free from special basis functions and grading exponents, can improve per-
formance even further and also revive integral equation formulations which normally have to be discarded due to excessive
demands for refinement. To demonstrate the potential of this new technique, we present large-scale electrostatic examples
on idealized, yet challenging, granular materials with more than 5000 grains. In applications, of course, other boundary con-
ditions than ours may arise and the presence of body forces may cause complications. Furthermore, corner opening angles
can be smaller than those of our perturbed hexagons. An automated approach to determine how many quadrature panels
should be included in Ck, the part of the boundary surrounding a singularity ck on which the compressed preconditioner acts,
based on rigorous proofs, is left for future work.

It would be nice to include more comparison with previous work. Unfortunately, papers on fast and highly accurate com-
putations on domains with a large number of corners and triple-junctions are scarce. One example, however, is Ref. [26], on
stress driven grain boundary diffusion in two-dimensional domains containing up to twelve grains without cracks. Here the
most difficult numerical aspect involves solving an elastostatic equation repeatedly using a least squares finite element
method incorporating special basis functions and it is extremely important that the singularities in the stress fields near
grain boundary junctions are properly resolved.
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